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. EXPONENTIAL LEVELING FOR STOCHASTICALLY
g . PERTURBED DYNAMICAL SYSTEMS

I: Introduction

Consider a deterministic system described by an ordinary

differential equation in ]Rd:

(1.1) ax’(t) = bx?(t))at.
A natural model for the behavior of this system, when subjected

to a small stochastic perturbation, is the diffusion process

4 described by the Itd equation

(1.2) dx®(t) = b(x“(t))dt + /€ G(XE(t))dwt,

w, being a BrownianAmotion in ]Rd. Applications of this type of
model can be found in Ludwig [6]), Schuss [10] and Matkowsky and
Schuss [9]. Several aspects of the asymptotic behavior of xe(-)

as € » 0 are of interest. Consider in particular a bounded
domain . If TQ .denotes the exit time of xE(-) from © and
E; the expectation for the solution of (1.2) subject to xe(O) = X,

then (under appropriate regularity assumptions)

u(x) = E[£(x"(T))]

is the solution of the Dirichlet problem
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(Here a = coT). The behavior of u® as € ¢ 0 depends, of

-course, on the nature of the tmjectories of (1.1) which start in
Q. One of the more interesting cases is when all deterministic
trajectories starting in g remain in ¢ and approach a unique

stable point, at the origin say. Because all continuous solutions

of the reduced equation

) N0
0= 1 b;(uy.

1

in § are constant, one expects that u® approaches a constant
function, or at least somehow "levels out'". We prove here, under

modest assumptions, that this leveling does occur and at an ex-
ponential rate:

sup [uS(x) - uS(y)| < e O/€

x,YeK
for any compact K c qQ, some § > 0 and all sufficiently small e.
In many cases much more is known. Matkowsky and Schuss [8]
presented a formal calculation to show that u® converges to a

constant function and derived a formula for what this constant should

be. Kamin [5] and Devinatz and Friedman [1] gave rigorous proofs

of this in cases where £® has a self-adjoint form




(1.4) #Frul = eV y 2 (¥ % ).
1

i,j 1%

In [4] Kamin showed that the formal calculation of Matkowsky and
Schuss for (1.3) is correct provided the solutions of certain
auxiliary first order PDE's exist and are sufficiently smooth.
.The fundamental work of Ventcel and Freidlin [12] also establiéhes
that u® converges to a constant for (1.3) in the case that
the variational distance V(0,y) which is central to their
treatment attains its minimum over y € 3Q at a unique place.
Actually the ¢ in (1.4) is of a more general form than

(1.3):

(1.5) Ll =7 Tau o+ fbl

€ . .
with b =~ b0 as € - 0. In this context the solutions u° may

not converge to a constant. Indeed, in [1] the authors presented

the two examples
(1.6a) e(x+2)u" - x(x+2)u' =0

(1.6b) eE(x+2)}u" + (e-x(x+2))u' = 0

on [-1,1], both with wu(-1) 0, u(l) = 1. They observed that

for (1.6b). If we combine these

i

u® - % for (1.6a) and u®

two examples as

i I S s il o




(1.6c¢) e(x+2)u" + (¢ Sin(%) - x(x+2))ut = 0,

we get an example of the type (1.5) for which u® does not converge.

The result proved here is for £° of the form

£ € € €
Y2l =5 1 a; .u + Y b.u_ .
2 i i,j xixj 17x4

The ae,bE are required to converge to aO,b0 as € + 0. This

form of ﬁfe encompasses all the cases (1.3)-(1.6) mentioned.
The boundary function u8 = fE is allowed to be E-dependent
and is required only to beagounded (in both x and €) and
measurable (Borel), but need not converge with €,

Section 2 contains the technical assumptions and the statement
of the main theorem. Sections 3 and 4 are devoted to a bound on

hitting probabilities which is the cornerstone of our proof. The

proof of the theorem is given in Section 4 also. Section 5 contains

two additional remarks.




I1: Technical Assumptions and Statement of the Main Result

The domain @ E]Rd is assumed to be bounded. To treat

u® as the solution to an elliptic boundary value problem with

€ € s . . .
u = f, a specified continuous function, one might also want

3N
to impose the requirement that 3Q be CZ. The probabilistic
‘definition (2.1) of u® renders this unnecessary however. The

assumptions on the coefficients are as follows:

a) ae(x), ao(x) are Lipschitz (or just Holder) continuous in
~uniformly in €, positive definite symmetric d x d

matrices on § and Iae - 3l ]

i ajl > 0 uniformly on ©

as € + 0;

b) bS(x) and b%(x) are in cl@, |b%-b% and

|b§.-bg.| (i =1,...,d) all converge to 0 uniformly
i i

on & as € ¥ 0;

c) for any solution to xo'(t) = bo(xo(t)) with xO(O) € Q,

xO(t) € & for all t > O‘ and 1lim xo(t) = 0;

0 t>+o

Bbi(O)

[_TSF—_} is stable, i.e. all its
j

d) the matrix B

eigenvalues have negative real parts.

For a specified x € @, xs(t) is a Markov diffusion process with

xe(O) = x and differential generator

€ 3 E 9
ai,j Bxiaxj * E bi 5xi )

. . € € .
For definiteness, one can think of a ,b as being extended to

all of ]Rd, the process xe(-) then being obtained as below for

el £




. . e

all t < +o, We are only concerned with x (t) for ¢t < Tos™ o

however, which does not depend on this extention. If one likes,
€ . . . .

x (t) can be considered as the solution to a stochastic differ-

ential equation (see [7] or [11])

dx“(t) = b (x"(£))dt + VE 0" (x"(t))dw , x“(0) = x
if a® = OS(UE)T where of is Lipschitz. Alternately,
xe(t) can be discussed directly via the martingale problem
associated with <°; [11]. (Continuity of coefficients is
sufficient for that treatment.)
The boundary functions fe(x) are assumed to be bounded in

x and € > 0 and measurable on 99. The ue(x) are now defined

by

(2.1) ut(x) = ELIE5(x"(T))].

It can be shown that u° € CZ(Q) and satisfies
éfﬁue] = 0 in Q.

Indeed, on any ball B with B < Q it is true that u® is the
Perron solution corresponding to the boundary data u® . Since
Perron solutions are C2 on the interior of their domagﬁs, for
bounded measurable data, ([ 3], Theorem 6.11) it follows that

u® € CZ(Q). The boundary behavior of u® does not concern us;

only the boundedness in €,x 1is necessary for our arguments below.

.
i
,
‘
e i M
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There is one more condition that we will need when proving

Theorem 2 below. In deriving (4.6) we will use

€ 0
(2.2) b (X%;? (x) - 6(1) as € ¢ 0 uniformly in Q.

-We know that bO(O) = 0, so the above will follow from the con-

if the further condition b (0) = 0

O .

€
vergence of bx to b
i i

is true. Once we restrict our attention to x in a compact

K < 2, however, we can achieve bE(O) = 0 without imposing any
further assumptions. The following argument accomplishes this:
from the stability of @ with respect to b0 as in d) above and the uniform
convergence of b® to b0 one can deduce that (for sufficiently
small €) b® has a critical point t® such that CE -~ 0 as

€ ¥ 0. Change variables to y = x - CE. The new coefficients
af(y) = a%(y+5®) and B%(y) = b(y+t%) satisfy all of our
assumptions above as well as BE(O) = 0. The only difficulty 1is
that the domains @ - & are e-dependent. We can pass to a
subdomain Q' so that y € Q' implies x =y + t* €q and a

x - ¢ €ex',

]

compact subset K' © Q' so that x € K implies vy
for sufficiently small E; Applying Theorem 1 to Q',K' we get
the same result as for Q,K. Taking the details of this argument
for granted, we assume in the following that bE(O) = 0 and
consequently that (2.2) is true.

Here is our main theorenmn.

Theorem 1: Under the assumptions described above, for any compact

K¢ @ there exists § >0 and EO > 0 so that for all 0 < € < g,




sup Ius(x) - ug(y)l < e 8/¢€,
X,y €K

Roughly, the reasoning behind the proof is that for small €
xe(t) should, with high probability, follow the deterministic
trajectory xO(t) into the vicinity of the origin before making
its first excursion to the boundary 3. A precise probabilistic
estimate along these lines is established in the next two sections.
To apply the probabilistic estimate, we need to know a modulus of
continuity for u®. The following lemma establishes the modulus

that we need; the rescaling argument is the same one used by

Kamin [5].

Lemma 1: Let K < @ be compact. Then there is a constant C

-1/2

so that que(x)‘ < Ce for all x € K and € < 1.

Proof:
X -
Make the change of varia es y = €
1/2

ué(e’’ %y) satisfies

1/20.

1 ~E ~c -
3 i%jai’j(Y)V + L bi(y)Vy. = for y € ¢

Yin i

The coefficients ad%(y) = aE(el/zy), bE(y) = e_l/zbe(el/zy) are
Holder continuous with respect to y uniformly in €. If we take 1 so that

B.(x) = {z: |x-z] < r} € @ whenever x € K, then B.(y) < e 1/2

whenever vy ¢ e'l/ZK and € < 1. We can apply the basic Scahuder interior

estimate ([3], Theorem 6.2) to B (y) for any y e V2 4o




conclude that |vv(y)| < C for all y € K for some constant C.

This implys the lemma after changing back to the original

variable x.

i
!
;
i
ég
i
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III: A Prototype: .An Ornstein-Uhlenbeck Process

Before proving the estimate on hitting probabilities

of the next section, it is convenient to look at the special case

of an Ornstein-Uhlenbeck process with generator as in (3.1) below.

The proof of the general case rests on a comparison with the
“function described by (3.4) and analyzed below.
In ]Rd, d > 2, suppose that & > 0 is a constant and CE(t)

is a diffusion process with differential generator

(3.1) S?E[u](x) = % Au(x) - ox-vVu(x). ?
Let T(r) be the hitting time of the sphere of radius r:

4
(3.2) T(r) = inf{t > 0: |25(t)] = r}. 4

A

Take a fixed R > 0 and, for r, x| < R, define the hitting

probability

Qjo(x) = PEIT(rg) < T(R); T(ry) < =l. B

What we show is that there exists a positive constant 61 >0

so that
N "6y/¢ "8y/¢ 1 i
(3.3) Q. (x) >1 - e whenever r, > e and |[x| <z R. ;
T - 0 - 3
In words, for ICE(O)I < % R we can let r, + 0 exponentially
with €1 and at the same time have the probability that

.
'




1

T(ro) < T(R) <converging to 1 exponentially fast. To prove this
we calculate Q: (+). By symmetry Qi depends only on r = |x]|.
0

0
Thus Q:O(x) = Q(r) where ¥°[Q(r)} =0 with Q(ry) = 1, QR) =

0= ¢°QClx] = 5 Q'(r) + [5 LL - arjer(n)

r

or

(3.4)  Q'(r) + [£- Z r1Q (r) = 0; Qry) = 1, QR) = 0.

For the above B =d - 1, but we will carry out the calculation

for arbitrary positive constants @,B. Solving (3.4) gives

1

0.




(3.5) Q(r)

12

2
Consequently, if 61 is slightly less than the minimum of E%—
and %%; (slightly less so as to absorb the RB), then for
-Gl/e 1
r, > e and r < £ R we have
0 - -3
-Gl/e
>1 -e for sufficiently small € > 0,

i s e ———— - -
- R . e
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IV. The Hitting Probabilities in the General Case

———r o ——

Next, we prove that an estimate like (3. 3) holds for the 1
b hitting probabilities of the process xE(t). (T(r) now denotes H
the time of first contact with the ball of radius r about the

origin for xe(').)

Theorem 2: For any compact K c @ there exists &6 > 0 so that

{ for some €, > 0 and all 0 < € <€

0 0

Pi[‘(ro) <T) > 1 - e %%  uhenever x € K and rg 2 e 8/,

Proof:

We will first make an argument for an appropriate neighborhood
of the origin. The key to the proof is to use not the standard
Euclidean norm |x| but a different symmetric positive definite
quadratic form. By hypothesis, the matrix B = [Bbg(O)/axj] is
stable. Lyapunov's Theorem on matricies implies that there exisis
a unique symmetric positive definite matrix V which solves

BTV + vB = -1.

Define o(x) = [x'Vx}%. For f € C®(R), a computation gives

that

€
4.1 f = f'(p). £ € ' (p). 3
(4.1) & (£(p(x))] (- 5 i?jalJpxipx + £ (51 aijpxixJ + Zbipxi],

LN

vp(x)--x& [o] n_lj_'b
P xixj P

1 .
;3'2§kvizx2*kvkj
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The idea is to effect a comparison of each of the terms of

< If(P)] with those of @[Q(r)] in (3.4). First,

} ac.p, b, = 52¥Ei!5
13X % x'Vx

which is bounded above and below away from 0 on & - {0}. More-
over, these bounds can be taken to be independent of € sufficiently
small since a° - ao uniformly. Thus, there exists a constant

A > 0 so that

(4.2) A_1 <1 agjpx Py < A in 9 - {0}, all sufficiently small E,
i7j
Secondly,
T, € ’
€ 1 € 1 x va vx _ C
(4.3) 2 a..p =_...E a..v.. +____.__._.____f__
i) ij xixj [¢ ij 1j P p2 p

for a positive constant C (again uniformly in € sufficiently

small). Thirdly,

P be. = XV (1) L xvl00 L xTvpEb?)
ix. P(x) p(x) p )1

1

Using bo(x) = Bx + o({x|) and be(x) - bo(x) = [x|o(1) from y
(2.2),we find that

! bie

- p,[XTVBX
i xg =7

+ o(|x|) + o(1)]

e}
2
= pe[- % lf%— +o(lx]) + 0o(1)].
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(The o({x|) is an |x|] » 0 and is independent of €. The o(1)
is as € > 0 and is uniform in x.) The second equality is a con-
sequence of our choice of V. It follows that for some D,R and

€ all positive,

(4.4) Ibie, < -Do(x) if p(x) <R and €< g

X.
1

(Also restrict R so that x € @ whenever p(x) < R.) Take
a = DA'l, B = AC and then Q(-) as in (3.2). Since Q' < 0,

(4.1)-(4.4) combined imply that, for € < 60 and p(x) < R.
- AC
(4.5) L1 2 7 A7Q®) + Q' @) - £ ave]) = o0,
Using %(r) for the hitting time of the set {x: p(x) = r} by \

xe('), (4.5) implies, either via the maximum principle or the

fact that Q(p(xe(t))) is a submartingale, that

P IT(rg) < T(R)] > QP(x)). ]

i

If Y >0 is an constant so that Y < ?%?l < v’ 1, then

T(Yro) > T(rg) provided |x€(0)|> Tq- If |x€(0)| < YR, then p(xE(O)) <R and

T(R) < T,. Consequently, for r, < |xe(0)| < YR we have

PIT(ry) < 1o > PoI(yry) < T(R)] 2 QP(x)).

This is trivially true also if |x€(0)| < T+ The calculation of

Section 2 now implies the existence of 61 > 0 so that for all

0 <ec<eg and |x| ¢ IR
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-61/5
if Yr, > e

-61/6

(4.6) PoIT(ry) < Tl 21 -e

The last step of the proof is to show that such an estimate

remains true for all x € K. By the strong Markov property

€ ErpE Y
P [T(ry) < T,] = E_[P [(T(ry) < 15 T(x R) < 7.]
X 0 Q X xe(.‘:(% R)) 0 Q 3 Q
-8./¢ €
> (e V)Pt R) < Tl
h It is sufficient therefore to prove that for some 62 >0 and
all x € K,
-8,/€
ErrcY ; 2
(4.7) Px[T(3 R) < TQ] > 1 e

€
Let ¢ (t;x), > 0, denote the solution of the deterministic

€
equation ¢'(t) = b€(¢(t)) with ¢(0) = x. Since K is
contained in the domain of attraction of the stable point O,

there exist T,n > 0 so that if x € K then

y € @ whenever |y - ¢0(s;x)| < 2n for some 0 <s < T,
and

lyl < % R whenever |y - ¢0(T;X)| < 2n.

As € -+ 0, b® converges to b0 uniformly in @ and consequently

€
$“(t;x) converges to ¢0(t;x) uniformly for t € [0,T] and x €
Therefore, if € is sufficiently small and x € K it will be true

that

K.
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y € Q@ whenever ly - ¢€(s;x)| <n for some 0 <s < T,

and

ly| < % R whenever |y - ¢E(T;X)| < n.

For such € and x € K,

Pelty < T R < P§[0§:¥T|¢E(s,x) - x%(s)| > nJ.
Define
t
8°(t) = x“(t) - x - f b€ (x%(s))ds
0

t
(= Ve J oe(xe(s))ds if xe is obtained from an Ito equation).
0

Gronwall's inequality implies that

sup [65(s3x) - x"(s)| < M+ sup |6°(s)]
0,T] 0<s<T

where M 1is the Lipschitz constant for the be(') (uniform in €).

It is a standard argument, using exponential martingales, that
Pl sup |0°(s)] > 2] < (2d) T
X [Ou'li)-] - 2' - exP[m]

T 2
where x a®x < Al|x}]|"; see [11], equation (2.1), pg. 87 and proof for

instance. Combining these facts, for all x € K and ¢

sufficiently small,
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HZe—ZMT

Polty < TG R)] < (2d)expl- ¢ (Gaar—1-

This shows (4.7) and completes the proof.

Theorem 1 is now simple.

‘Proof (of Theorem 1):

Take any x € K and set 1, = e 8/€ (6 > 0 as in Theorem 2).

uS () = B (T (r))); Tlrg) < 1] ¢ ESLES(xF (1)) 1, < T(rg)].
Therefore,

ut () - u(0) = Bl (xT (g (rg))) - uf(0); T(ry) < 1)
+ Eg[€ (x (7)) - u (0);5 Ty < T(ry)]

[u®x) - u®()| < N (W) - uf0)| +
y fro

2 iﬁflf€l°P§[TQ < (rg)]

sup|Vu€I-r0 + 2 sup]feje"s/e-
K aQ

1A

-G/E.

A

ce /27878 sup|£%]e
:19)

The theorem now follows (with a new slightly smaller §).

SR TR P LW P W ST WY VRO PRI WM L WY ¥
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V: Concluding Remarks

We have two simple observations to make in closing. The first
is regarding the case in which © contains several critical points
of (1.1). This has been discussed in the literature: [9], [12].

€ € - . .
Both u -+ constant and u -+ a piecewise constant fupction are

R

‘possibilities now, depending on the Ventcel-Freidlin variational

distances between the critical points and 3. If x* is an

asymptotically stable critical point (replacing the origin in d)
of section 2) and Q% < Q is its domain of attraction, then by
taking £ = u* on 30* we can apply Theorem 1 to see that
leveling takes place exponentially fast in each such domain of
attraction.

Finally, we observe that the specification of boundary data
£5 s actually superfluous. All that matters in the proof is the

availabili“y of a bound in € for the u®. Theorem 1 could be

formulated as follows:

for K< compact there exist & > 0 and €, > 0 so that

whenever ﬁ/e[u] =0 in Q and € < €92

(6.1) sup Ju(x) - u(y)| < e %/

€
sup|u].
X,Y€EK 9]

Define the exit measures on the Borel subsets of 30 by
€ €, E
mo(B) = P_[x"(1,) € B].

. S . . . € €
The strong maximum principle implies that "x and ﬂy are mutually
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absolutely continuous for x,y € Q. (6.1) implies that

€
du -
[ eora - —Drias| < e, .
9 dmy Lo(m)

“for all f Dbounded and measurable on o2. This is equivalent to

< e-é/e

1 - Y

(6.2) €
dm

dn®
,) for x,y € K, € < 60.

Lh(r9)

In cases for which a Green's function exists (if 39 and all the

- . €
coefficients are C2 for instance) so that u can be expressed

as
uf(x) = J 6 (x,s)£5(s)ds,
an

then ﬂi(ds) = Ge(x,s)ds on 9%, and (6.2) becomes, for x,y € K,

8/ €

(6.3) ]aQIGE(x,s) - 65(y,s)|ds < e
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